Заказ решений Отзывы и Комментарии Прислать решение Новости и статьи Контакты Карта сайта

Бесплатный Онлайн Решебник Яблонского

Раздел 3. Динамика

Глава II. Динамика механической системы.

Назад в оглавление


Задание Д.7. Применение теоремы о движении центра масс к исследованию движения механической системы (решено 77%)

Тела 1 и 2 (рис. 140–142) движутся по отношению к телу 3 с помощью механизмов, установленных на этом теле (силы, приводящие в движение механизмы, являются внутренними силами данной механической системы). Тело 3 находится на горизонтальной плоскости.

1. Предполагая горизонтальную плоскость гладкой, определить зависимость между перемещением s3=s3(t) тела 3 и относительным перемещением s1r=s1r(t) тела 1 (по отношению к телу 3), если механическая система в начале рассматриваемого движения (t=0) находилась в состоянии покоя, причем s1r0=s2r0=s30=0; определить величину горизонтальной составляющей реакции Rx одного из упоров, которые удерживали бы тело 3 от перемещения.

2. Предполагая горизонтальную плоскость шероховатой, написать дифференциальное уравнение движения тела 3; определить условие, при котором тело 3 (при заданных параметрах системы) придет в движение, и найти зависимость между s3(t) и s1r(t), считая, что дальнейшее движение происходит при соблюдении этого условия (при t=0 s'1r0=s'22r0=s'30=0, s1r0=s2r0=s30=0).

Известны: m1, m2 – массы тел 1 и 2; m3 – масса тела 3 с находящимися на нем механизмами привода (центр масс C3 по отношению к телу 3 не перемещается); R, r – радиусы больших и малых окружностей тел 1 и 2 или звеньев A и B механизмов привода; α, β – углы наклона граней призм (тел 3) и лент транспортеров к горизонтальной плоскости; fсц, f – коэффициенты трения покоя (сцепления) и трения скольжения соответственно, принимаемые одинаковыми во всех вариантах: fсц=0,11, f=0,10; s1r=s1r(t) – непрерывная и возрастающая функция времени (ее производная тоже непрерывна и возрастает).

Качение тел происходит без проскальзывания; нити невесомы и нерастяжимы.

На схемах тела 1, 2, 3 – в отклоненных от начального (t=0) положениях; показаны относительные перемещения s1r, s2r тел 1 и 2 и предполагаемое абсолютное перемещение s3 тела 3 в сторону возрастания этих перемещений. Необходимые для решения данные приведены в табл. 43. Массой зубчатой рейки (варианты 1, 6, 7, 14, 15, 20, 22, 29) пренебречь.

Решения задания Д.7. Варианты: 1 2 3 4 5 7 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Задание Д.8. Применение теоремы об изменении количества движения к исследованию движения механической системы (решено 70%)

Механическая система (рис. 144–146) состоит из тел 1, 2, 3 с массами соответственно m1, m2 и m3. Массами остальных тел, составляющих систему, пренебречь.

На тело 1 наложены две связи. Опора A препятствует перемещению по нормали к опорным поверхностям (по вертикали). Опора B не препятствует перемещениям по вертикали и горизонтали, но исключает возможность поворота.

В некоторый момент времени (принятый за начальный), когда скорость тела 1 равна v0, а угловая скорость тела 2 – ω20, движение тел 2 и 3 относительно тела 1 начинает замедляться (направление вращения тела 2 и направление скорости v0 показаны на рис. 144–146). Торможение осуществляется внутренними для всей системы силами. Устройство, осуществляющее торможение, на схемах не показано. В процессе торможения угловое ускорение ε2 (замедление) тела 2 остается постоянным.

Определить скорость vт тела 1 в тот момент времени, когда ω2 становится равным нулю, т. е. относительное движение тел 2 и 3 прекращается. Вычисление vт произвести для одного из следующих условий:

а) на тело 1 со стороны направляющих A действует сила кулоновского (сухого) трения F=-f|N|v/|v| (f – коэффициент трения скольжения, |N| - модуль реакции в точке A);

б) на тело 1 кроме силы трения скольжения F в опоре A действует сила «вязкого» трения R со стороны опоры B: R=-bv (b – коэффициент «вязкого» сопротивления, v – вектор скорости тела 1).

Вычисление vт произвести точно и приближенно. В приближенном расчете пренебречь величинами первого и более высоких порядков малости относительно промежутка времени Т=ω202.

Для всех вариантов принять v0=2 м/с; ω20=10 рад/с, ε2=250 рад/с2; f=0,25; b=10 Н*с/м.

Считать, что проскальзывание колес по соответствующим поверхностям отсутствует.

Необходимые для расчета данные приведены в табл. 44.

Решения задания Д.8. Варианты: 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 21 25 26 28 30

Задание Д.9. Применение теоремы об изменении кинетического момента к определению угловой скорости твердого тела (решены все варианты)

Тело H массой m1 вращается вокруг вертикальной оси z с постоянной угловой скоростью ω0; при этом в точке O желоба AB тела H на расстоянии AO от точки A, отсчитываемом вдоль желоба, находится материальная точка K массой m2. В некоторый момент времени (t=0) на систему начинает действовать пара сил с моментом Mz=Mz(t). При t=τ действие сил прекращается.

Определить угловую скорость ωτ тела H в момент t=τ.

Тело H вращается по инерции с угловой скоростью ωτ.

В некоторый момент времени t1=0 (t1 – новое начало отсчета времени) точка K (самоходный механизм) начинает относительное движение из точки O вдоль желоба AB (в направлении к B) по закону OK=s=s(t1).

Определить угловую скорость ωT тела H при t1=T.

Тело H рассматривать как однородную пластинку, имеющую форму, показанную на рис. 148–150. Необходимые для решения данные приведены в табл. 45–46.

Примечание. Знак минус перед Mz и ω соответствует направлению вращения часовой стрелки, если смотреть со стороны положительного направления оси z.

Решения задания Д.9. Варианты: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Задание Д.10. Применение теоремы об изменении кинетической энергии к изучению движения механической системы (решены все варианты)

Механическая система под действием сил тяжести приходит в движение из состояния покоя; начальное положение системы показано на рис. 152–154. Учитывая трение скольжения тела 1 (варианты 1–3, 5, 6, 8–12, 17–23, 28–30) и сопротивление качению тела 3, катящегося без скольжения (варианты 2, 4, 6–9, 11, 13–15, 20, 21, 24, 27, 29), пренебрегая другими силами сопротивления и массами нитей, предполагаемых нерастяжимыми, определить скорость тела 1 в тот момент, когда пройденный им путь станет равным s.

В задании приняты следующие обозначения: m1, m2, m3, m4 – массы тел 1, 2, 3, 4; R2, r2, R3, r3 – радиусы больших и малых окружностей; i2x, i – радиусы инерции тел 2 и 3 относительно горизонтальных осей, проходящих через их центры тяжести; α, β – углы наклона плоскостей к горизонту; f – коэффициент трения скольжения; δ – коэффициент трения качения.

Необходимые для решения данные приведены в табл. 47. Блоки и катки, для которых радиусы инерции в таблице не указаны, считать сплошными однородными цилиндрами.

Наклонные участки нитей параллельны соответствующим наклонным плоскостям.

Решения задания Д.10. Варианты: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Задание Д.11. Исследование поступательного и вращательного движений твердого тела (решено 90%)

Механическая система состоит из механизма (колес 1 и 2) и груза 3.

К колесу 1 приложена пара сил с моментом M=M(t) (движущий момент) или движущая сила P=P(t).

Время t отсчитывается от некоторого момента (t=0), когда угловая скорость колеса 1 равна ω10. Момент сил сопротивления ведомого колеса 2 равен Mc. Другие силы сопротивления движению системы не учитывать.

Массы колес 1 и 2 равны m1 и m2, а масса груза 3 – m3.

Радиусы больших и малых окружностей колес R1, r1, R2, r2.

Схемы механических систем показаны на рис. 156–158, а необходимые для решения данные приведены в табл. 48.

Найти уравнение движения тела системы, указанного в последней графе табл. 48.

Определить также натяжение нитей в заданный момент времени, а в вариантах, где имеется соприкасание колес 1 и 2, найти, кроме того, окружное усилие в точке их касания. Колеса 1 и 2, для которых радиусы инерции ix1 и ix2 в

Решения задания Д.11. Варианты: 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Задание Д.12. Исследование плоского движения твердого тела (решено 70%)

Определить значение постоянной силы P под действием которой качение без скольжения колеса массой m носит граничный характер, т. е. сцепление колеса с основанием находится на грани срыва.

Найти также для этого случая уравнение движения центра масс колеса C, если в начальный момент времени его координата xC0=0 и скорость vC0=0.

Варианты задания показаны на рис. 160–162, а необходимые для решения данные приведены в табл. 49.

В задании приняты следующие обозначения: iC – радиус инерции колеса относительно центральной оси, перпендикулярной его плоскости; R и r – радиусы большой и малой окружностей; fсц – коэффициент сцепления (коэффициент трения покоя); δ – коэффициент трения качения.

Примечание. Колеса, для которых радиусы инерции не указаны, считать сплошными однородными дисками.

Решения задания Д.12. Варианты: 2 3 4 5 6 8 11 12 14 15 16 18 20 21 22 23 24 25 26 29 30

Другие главы раздела:
Глава I. Динамика материальной точки (Д1, Д2, Д3, Д4, Д5, Д6)
Глава III. Аналитическая механика (Д14, Д15, Д16, Д17, Д18, Д19, Д20, Д21, Д22)
Глава IV. Колебания механической системы (Д23, Д24, Д25, Д26)

Рад Что Смог Вам Помочь! Поддержите Сайт - Поделитесь Ссылкой с Друзьями!


(c) chertovfizik.ru